CS 58500 Theoretical Computer Science Toolkit (Spring 2026) Problem Set # 1
{{Your name}} Due: Feb 12th

Problem 1: Log-sum Inequality. (20=1545 points)

1. Let {ay,...,an} and {by,...,by} be two sets of positive real numbers. Use Jensen’s
inequality to prove the following inequality.
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where A := Zf\il a; and B := Zf\il b;. Furthermore, equality holds if and only if a;/b;
is identical for all ¢ € {1,..., N}.

2. Let X be a finite set and P : X — [0,1] and @ : X — [0,1] be two probability
distributions on X' such that for any = € X, Q(z) # 0. The relative entropy from
to P is defined as follows:

D(PIQ) = 3 Plo)lox ).
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Show that for any P and @, it holds that D(P||Q) > 0. Moreover, state when
D(P[Q) = 0.

Solution.



Problem 2: Chernoff-Hoeffding Inequality. (10 pts)

Let Xi,..., X, be i.id. Bernoulli random variables with E[X;] = p. Let Z := Y " | X;.
Prove the following Chernoff-Hoeffding inequalities:

Pr[Z > (p+e)n] < exp(—nD(p+ellp)) Ve e (0,1—p),
Pr[Z < (p—e)n] < exp(—nD(p — ¢|p)) Ve e (0,p),

where the binary relative entropy is

p
D(pllq) =plog=+ (1 —p)log .
(o) = p1og? + (1~ p)log ;=7

Solution.



Problem 3: Tight Estimation: Central Binomial Coefficient. (30
pts)

We will learn a new powerful technique to prove tight inequalities. As a representative
example, we will estimate the central binomial coefficient. For positive integer n, we will

prove that
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To prove these bounds, we will use the following general strategy.

where

1. Define the following two sequences
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2. Prove the following limit.
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using the Stirling approximation n! ~ v/27n - (n/e)".
3. Prove {a,}, is an increasing sequence.
4. From (b) and (c), conclude that a, < 1, implying (") < U,.
5. Prove {b,}, is a decreasing sequence.

6. From (b) and (e), conclude that b, > 1, implying (277) > L,.

Remark: What did we achieve from this exercise?  We started from the asymptotic
estimate (2:) ~ 4" /\/mn. From this asymptotic estimate, we obtained explicit upper and
lower bounds. We learned a powerful general technique to translate asymptotic estimates
into explicit upper and lower bounds automatically.

Solution.



Problem 4: Top Eigenvalue of Random Matrices. (25 pts)

Let M be an n x n symmetric random matrix such that {M;; : i > j} are i.i.d. symmetric
Bernoulli random variables with Pr[M;; = £1] = 3. Let Apax(M) denote the largest eigen-
value of M, and let vy.(M) be a corresponding unit eigenvector. Recall the variational
characterization

Amax (M) = sup (v, Mv),

vE By

where By := {v € R" : ||v]|s < 1}.

1.

Fix indices ¢ > j. Define M ~(9) to be the symmetric matrix obtained by choosing
the entry Mi;(”) = Mj;(”) € {—1,1} so as to minimize Ayayx(M =), while keeping all

other entries fixed (i.e., Mk_l(ij) = My, for {k,1} # {i,j}). Define
D Amax(M) 1= Anax (M) — Apparc(M ).

Show that )
Di;)\max(M) S <UmaX(M)7 (M - M_(Zj))vmax(M»‘

. Use the fact that M and M~ differ only in the (i, ) and (j,4) entries to prove that

Di_j)\max(M) S 4 |Umax(M)i| ’Umax(M)j‘~

Conclude that

n

S (D Amax(M))” < 16.

ij=1
(Variance) Using the tensorization of variance to prove that

Var[Amax(M)] < 16.

(Concentration) Apply the bounded difference inequality to prove that for all ¢ > 0,

Pr e (M) — (M) > 1] < exp (—2—4) |

Solution.



Problem 5: Random Graphs. (15 pts)

Let G ~ G(n,p) be an Erdés—Rényi random graph on vertex set [n] = {1,...,n}, where each
edge appears independently with probability p. A coloring of the graph is the assignment
of a color to each vertex such that every pair of vertices connected by an edge have distinct
colors. The chromatic number x(G) is the minimal number of colors needed to color the
graph.

Figure 1: Vertex-exposure martingale for the chromatic number of G(n,p) with n = 3. The
martingale is obtained by starting at the leftmost point and splitting at each branch with
equal probability. (Source: Yufei Zhao)

1. (Vertex exposure martingale) We can reveal the random graph G(n,p) by first fixing
an order on all the vertices and, at the i-th step, with 0 < ¢ < n, revealing all
edges whose endpoints are contained in the first ¢ vertices. This process produces
a martingale My, My, ..., M, where M; is the conditional expectation of x(G) after
revealing whether there are edges connected to the first ¢ vertices.

Show that {M}}}_, is a martingale and that M, = E[x(G)] and M,, = x(G).

2. Prove that for every k € {1,...,n},
| My, — Mi_1]|o < 1.

(Hint: compare two graphs that differ only in the edges incident to vertex k and show
that their chromatic numbers differ by at most 1.)

3. Apply McDiarmid’s inequality to show that for all ¢ > 0,
Pr{[x(G) — Ex(G)| > ty/n] < 2¢7".

Solution.



